LabVIEW

Dr Marko Dimitrijević

Akvizicija i generisanje signala u LabVIEW

Akvizicija i generisanje signala u LabVIEW

- Sprega akvizicionog uređaja, računara i virtuelnog instrumenta.
- DAQmx drajveri
- Measurement & Automation Explorer.

Definicija i konfiguracija

Osnovni zadatak digitalnih akvizicionih sistema (DAQ) je merenje ili generisanje realnih, fizičkih signala

DAQ sistem se sastoji:

- •Senzora/aktuatora/transdusera
- •Kondicionera signala
- DAQ uređaja
- Drajvera
- Softvera

Hardverska konfiguracija sistema

Uređaji i interfejsi

- Prikazuje instaliranje i prepoznate akvizicione uređaje
- Uključuje alate za konfiguraciju i testiranje akvizicionog uređaja
 - Raspored pinova
 - Test panel
 - Testiranje
 - Kalibracija

Test panel

- Alat za testiranje uređaja
 - Analognih ulaza
 - Analognih izlaza
 - Digitalnih I/O
 - Brojača
- Efikasan alat za otklanjanje grešaka

Skaliranje signala

- Definisanje različitih skala
- Prikazuje definisane skale
- Rekonfiguracija postojećih skala

Definisanje skala

- Interfejs za kreiranje skala koje se mogu koristiti u sprezi sa virtuelnim kanalima
- Svala skala ima sledeće atribute:
 - Ime i opis
 - Tip (linearna, polinomska i tabelarna)

Kanali i procesi

Kanali i procesi

- Sva merenja se obavljaju preko virtuelnih kanala, koji predstavljaju skup parametara kao što su logičko ime kanala, realni fizički kanal, ulazni terminalni konektori, tip merenja/generisanja signala i skaliranje signala.
- Virtuelni kanali se mogu konfigurisati globalno na nivou sistema ili programski preko aplikacionog interfejsa. Kod NIDAQmx drajvera moguće je izvršiti agregaciju više različitih kanala u jedan proces (task) koji predstavlja merenje, odnosno generisanje signala, pri čemu će svi kanali imati isti način akvizicije.
- Analogno kanalima, procesi se mogu kreirati globalno na nivou sistema, i preko aplikacionog interfejsa programski.

Data Neighborhood

- Konfiguracija virtuelnih kanala i procesa na nivou sistema
- Prikazuje konfigurisane kanale
- Objedinjuje alate za testiranje i rekonfiguraciju kanala i procesa

DAQ Task & Channel Wizard

- Kreiranje virtuelnih kanala i procesa:
 - Analogni ulaz
 - Analogni izlaz
 - Digitalni I/O
- Svaki kanal ima sledeće atribute:
 - Ime i opis
 - Tip senzora
 - Opseg (određuje pojačanje)
 - Povezivanje (diferencijalno, RSE, NRSE)
 - Skaliranje

Akvizicija u LabVIEW

NI-DAQmx

Jedan skup VI za akviziciju analognih signala, digitalnih signala i brojače

DAQ Assistant Express VI

- Za brzo i jednostavno programiranje DAQ uređaja
- Kreira lokalni zadatak
- Većina aplikacija se može realizovati samo pomoću DAQ Assistant Express VI

DAQ Assistant

Tip merenja može biti:

- Analogni ulaz
- Analogni izlaz
- Brojački ulaz
- Brojački izlaz
- Digitalni I/O

Analogni ulaz

Proces analognog ulaza je specificiran ulaznom veličinom:

- napon,
- struja,
- frekvencija,
- naprezanje,
- otpornost,
- temperatura,
- pritisak,
- ubrzanje,
- sila,...

Analogni ulaz – izbor fizičkih kanala

- Nakon izbora akvizicije, može se izabrati jedan ili više fizičkih kanala, koji su na raspolaganju
- U listi su prikazani svi akvizicioni uređaji vezani za računar, a podržavaju tip akvizivcije
- Svi kanali u jednom procesu će imati isti način akvizicije

Analogni ulaz – dijalog za konfiguraciju procesa

Analogni ulaz – povezivanje

Analogni ulazi kartice se mogu povezati na tri načina:

- sa jednim priključkom bez referentne tačke (NRSE - nonreferenced single-ended)
- sa jednim priključkom i referentnom tačkom (RSE referenced single-ended)
- · diferencijalno.

U realizaciji je najčešće korišćen diferencijalni način povezivanja adi eliminacije šuma koji nastaje naliniji razvodni blok – kartica i potiskivanje srednje vrednosti signala

Snimanje podataka

- Često je potrebno podatke dobijene akvizicijom snimiti radi offline analize,
- LabVIEW ima nekoliko Express VI za čitanje i upisivanje podataka u fajl – LabVIEW Measurement File *.lvm
- LabVIEW Measurement File je ASCII kodiran tekstualni fajl

Analogni izlaz

Proces analognog izlaza je specificiran signalom:

- napona,
- struje.

Analogni izlaz – dijalog za konfiguraciju procesa

Brojači (Counters)

Brojač je digitalno kolo za merenja vremena.

Tipične primene su:

- brojanje događaja
- merenje frekvencije
- merenje perioda
- određivanje pozicije
- generisanje impulsa

Brojački registar – sadrži trenutnu vrednost brojača Source – ulaz koji inkrementira vrednost registra Gate – kontrolni ulaz koji dozvoljava funkciju brojača Output – signal koji generiše brojač, najčešće povorka impulsa

Brojači

Proces brojača određen je tipom merenja:

- •ivica impulsa,
- •frekvencija,
- •period,
- •širina impulsa,
- poluperiod,
- •pozicija, itd.

ili generisanja:

povorka impulsa.

Brojači – dijalog za konfiguraciju procesa (frekvencija)

Digitalni ulaz/izlaz

- Digitalni
 ulaz/izlaz može
 pročitati ili
 upisati na
 pojedinačnu
 liniju ili port
- Digitalni port je skup linija

Digitalni ulaz/izlaz – dijalog za konfiguraciju

Dijalog za konfiguraciju:

linija/port

invertovanje linije/porta

frekvencija semplovanja i broj semplova

Pregled

- NI MAX je osnovni alat za konfiguraciju i testiranje DAQ uređaja.
- DAQ Assistant je ExpressVI koji se koristi za brzo konfigurisanje akvizicionog uređaja i samu akviziciju signala: semplovanje ili generisanje.
- Većina aplikacija može da se realizuje pomoću DAQ Assistant. Za složenije zahteve, koji zahtevaju sinhronizaciju i precizna vremenska ograničenja, na raspolaganju su VI iz palete Measurement I/O/NI-DAQmx.
- DAQ Assistant podržava sledeće tipove akvizicije: analogni ulaz, analogni izlaz, digitalni ulaz, digitalni izlaz i operacije sa brojačima.

Waveform tip podataka

Waveform tip podatla

- Waveform tip
- Manipulacija waveform tipom podataka.
- Grafička prezentacija podataka
- Analiza signala (DFT, FFT, filtri)

Waveform tip

Waveform tip podataka je klaster sa tri komponente:

- t0 početno vreme
- dt vremenski priraštaj
- Y niz amplituda signala

Waveform Graph

Waveform Graph 2

0.004

0.006

Plot 0

0.002

Time

Build Waveform (apsolutno vreme) Klaster (relativno vreme)

Waveform Chart, Waveform Graph i XY Graph

Controls » Graphs and Charts paleta

Prilagođavanje grafika i dijagrama

Desnim klikom na kontrolu i selekcijom menija **Visible Items** mogu se prikazati:

- Plot Legend
- Digital Display
- Scrollbar
- X and Y Scale
- Graph Palette
- Scale Legend

Parametri dijagrama i grafika

- Prilagođenje izgleda
- Format i preciznost podataka
- Oblik grafika
- Skaliranje
- Dokumentacija

Dijagram – Waveform Chart

Waveform
Graph – Crta
numerički niz
prema
indeksima
elemenata

Tri načina iscrtavanja:

- Strip chart
- Scope chart
- Sweep chart

Formiranje dijagrama

Jednostruki dijagram

Višestruki dijagram

Waveform graph – jednostruki grafik

Uniformna X osa

$$X_0 = 0.0$$

$$dX = 1.0$$

Uniformna X osa

X₀ i dX prema parametrima Waveform klastera

Waveform graph – višestruki grafik

XY Graph

- XY Graph Crta vrednost jednog niza u odnosu na drugi
- Neuniformna X osa
- Dva različita niza X i Y određuju tačke grafika

Grafici i dijagrami – pregled

Context Help prozor objašnjenja za grafike i dijagrame

Pregled

- Waveform tip podatka je klaster koga čine početno vreme, vremenski priraštaj i numerički niz podataka.
- Vreme može biti apsolutno (u odnosu na sat realnog vremena) i relativno (u odnosu na neku referentnu tačku).
- Waveform Chart je numerički indikator koji prikazuje jedan ili više grafika. Ima tri načina iscrtavanja:
 - Strip chart prikazuje podatke koji pristižu kontinualno, skrolujući panel s leva na desno.
 - Scope chart prikazuje podatke iscrtavajući s leva na desno. Nakon što se panel sipuni, grafik se briše i iscrtavanje kreće od krajnje leve tačke.
 - Sweep chart prikazje podatke kao i scope chart, pri čemu stare podatke prikazuje na desnoj, a nove na levoj strani panela, odojene crvenom linijom.

Pregled, nastavak

- Waveform graph i XY graph prikazuju nizove podataka.
- Desnim klikom na Waveform graph/chart kontrolu mogu se podesiti atributi i stilovi grafika.
- Može se prikazati više grafika pomoću Build Array funkcije, odnosno pomoću Bundle funkcije za dijagrame i XY grafike.
- Context Help može biti od pomoći prilikom vezivanja Waveform chart/graph indikatora.